Chiral annulated cyclopentadienyl ligands: Synthesis and crystal structure of both exo and endo $\left.\operatorname{Rh}\left\{\eta^{5}-\mathrm{Cp}^{\prime}\right\}(\operatorname{cod})\right\}$ [$\mathrm{Cp}^{\prime}=(4 S, 7 R)-1,2,3-\mathrm{tri}$
 henyl-4,8,8-trimethyl-1 $\mathrm{H}, 4,5,6,7$-tetrahydro-4,7-methanoindenyl] ${ }^{1}$

James A. Ramsden, David J. Milner ${ }^{2}$, Harry Adams, Neil A. Bailey, P.D. Hempstead, Colin White *
Department of Chemistry, The University, Sheffield S3 7HF, UK

Received 25 June 1997; received in revised form 1 September 1997

Abstract

The title homochiral cyclopentadiene ligand $\mathrm{C}_{31} \mathrm{H}_{30}$ (i.e., $\mathrm{Cp}^{\prime} \mathrm{H}, \mathbf{5}$) has been synthesised from camphor in four steps. The lithium salt of this ligand reacted with $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}$ to give predominantly racemic (η^{4}-cycloocta-1,5-diene) $\left[\eta^{5}\right.$-1,2,3-triphenyl-4-methyl-7-isopropyl1 H -indenyl]rhodium although the desired $\mathrm{RhCp}^{\prime}(\mathrm{cod})$ complex was formed in 20% yield as an equal mixture of endo 7a and exo 7b isomers. The X-ray structures of $\mathbf{7 a}$ and $\mathbf{7 b}$ have been determined at room temperature with use of $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71069 \AA$). Both compounds crystallise in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right.$, No. 19); for compound $\mathbf{7 a}, a=13.549(23) \AA, b=14.490$ (25) $\AA, c=15.909(14) \AA, V=3123(8) \AA^{3}, Z=4$ and $D_{\mathrm{c}}=1.303 \mathrm{~g} \mathrm{~cm}^{-3}$ and the structure was refined to $R=0.0488$ on the basis of 2545 independent reflections. For the exo isomer 7b, $a=13.301(18) \AA, b=15.599(32) \AA, c=14.436(19) \AA, V=2995(10) \AA^{3}, Z=4$ and $D_{\mathrm{c}}=1.359 \mathrm{~g} \mathrm{~cm}^{-3}$; the structure was refined to $R=0.0362$ on the basis of 4620 independent reflections. Bromine reacts with the compounds $\mathbf{7 a}$ and $\mathbf{7 b}$ to give the corresponding $\left[\left\{\operatorname{Rh}\left(\mathrm{Cp}^{\prime}\right)\right\}_{2}\left(\mu-\mathrm{Br}_{3}\right)\right] \mathrm{Br}_{3}$. © 1998 Elsevier Science S.A.

Keywords: Chiral annulated cyclopentadienyl; Rhodium complexes; Fused camphor derivatives

1. Introduction

In the last ten years there has been considerable interest in the development of chiral cyclopentadienyl ligands [1-5], which has been primarily motivated by the belief that such ligands could play a valuable role in catalytic enantioselective synthesis, particularly for reactions or substrates where chiral phosphine ligands are ineffective. To date, considerable success has been achieved with chiral metallocene complexes that catalyse the polymerization of alkenes [6-8], the hydrogenation of nonfunctionalised alkenes [9-11] and $\mathrm{C}=\mathrm{N}$ bonds [12], the hydrosilylation of ketones [13,14] or act as chiral Lewis acid catalysts [15,16]; all of these

[^0]reactions take place with high enantioselectivities, often approaching $\geq 95 \%$ e.e. Less success has been achieved with monocyclopentadienyl catalysts [2,17]; the only chiral monocyclopentadienyl complex that has given impressive results is $\mathrm{ZrCp}^{* *} \mathrm{Cl}_{3}$ (where $\mathrm{Cp}^{* *}$ is a cyclopentadienyl ligand having fused bornyl substituents) [18]. Clearly, having fused chiral substituents is one of the features that contributes to the effectiveness of this ligand.

Having embarked on a programme to synthesise an effective chiral monocyclopentadienyl ligand to develop chiral analogues of $\left[\operatorname{Rh}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}_{2}\right]_{2}$ and other attractive monocyclopentadienyl catalysts [19-23], we decided to incorporate a fused camphor substituent into a cyclopentadienyl ring. Further, since we and others have shown that phenyl substituents on a cyclopentadienyl ring adopt a chiral array $[24,25]$, we were also attracted to the idea of having phenyl substituents on the other positions of the cyclopentadienyl ring because of the possibility that the fused chiral substituent would dictate
the chiral array of the phenyl substituents, and in this way transmit the chirality to the metal environment. Thus, our target chiral cyclopentadiene ligand containing all these desirable features was $(4 S, 7 R)-1,2,3$-tri-phenyl-4,8,8-trimethyl-1 $\mathrm{H}, 4,5,6,7$-tetrahydro-4,7-methanoindene, 5. The synthesis and reactions of this ligand are described herein.

2. Results and discussion

2.1. Ligand synthesis

Although initially we thought we were being somewhat ambitious in targeting ($4 S, 7 R$)-1,2,3-triphenyl-4,8,8-trimethyl- $1 H, 4,5,6,7$-tetrahydro-4,7-methanoindene, we were delighted to find that this ligand could be synthesised in just four steps from readily available camphor as illustrated in Scheme 1. The relative simplicity of this synthesis compared to the syntheses of most other chiral cyclopentadienes is another attractive feature of this ligand. The first two steps involved a slight modification of a literature procedure to give (4 S, 7R)-1,3-diphenyl-4,8,8-trimethyltetrahydro-4,7-
methanoindenone [26]. Addition of phenyl magnesium bromide to a solution of this indenone gave the corresponding carbinol, 4. From the ${ }^{1} \mathrm{H}\left\{{ }^{13} \mathrm{C}\right\}$ NMR spectra of the product, it was apparent that there is only one isomer of the carbinol present, and this presumably arises from the Grignard attacking the carbonyl on the less hindered face; the ability of the syn-7 methyl group of camphor to block the exo attack of nucleophiles is well documented [27,28]. The required cyclopentadiene (5) was obtained by treatment of the alcohol, 4 with hydrochloric acid and zinc in acetic acid although ${ }^{1} \mathrm{H}\left\{{ }^{13} \mathrm{C}\right\}$ NMR spectroscopy showed the product to be a mixture of structural and stereo-isomers due to the rearrangement of the double bonds and epimerisation at $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}.

2.2. Rhodium complexes

Treatment of the cyclopentadiene 5 with butyl lithium and di- μ-chlorobis(cyclooctadiene)dirhodium gave a mixture of products of which the major component (70\%) was a rhodium cyclooctadiene complex. However, the ${ }^{1} \mathrm{H}\left\{{ }^{13} \mathrm{C}\right\}$ NMR spectra, the elemental analysis and mass spectrum were all at variance with a bornylcy-

(1)

(2)

(3)

LiBu
ii $[\mathrm{RhCl}(\mathrm{COd})]_{2}$

Scheme 1.
clopentadienyl complex, whereas, all the data were consistent with an indenyl complex 6. The indenyl complex 6 is chiral by virtue of the substituted indenyl ligand possessing prochiral faces, although the product obtained was the racemic modification and showed no overall optical activity.

The formation of this new ring system from the cyclopentadiene 5 is unusual, but related rearrangements have been reported. For example, when α-fenchyl tosylate is heated under reflux with acid it gives rise to the α-fenchyl cation; this proceeds through a series of rearrangements via the bornyl cation to 4-methyl isopropylbenzene $[29,30]$. In our case, we believe that the rhodium is involved in the formation of 6 that entails a dehydrogenation of the anion of 5 . However, we cannot rule out a radical pathway as proposed for the related rearrangement of bornyls to give olefinic products [31,32].

The minor product (20%) of the complexation of the cyclopentadiene 5 to rhodium was shown by ${ }^{1} \mathrm{H}\left\{{ }^{13} \mathrm{C}\right\}$ NMR spectroscopy to consist of a $1: 1$ mixture of the endo- and exo- form of the desired cyclopentadienyl
complex, 7a and 7b, respectively. The presence of the methyl group on the 4-position of the bornyl fragment confers planar chirality on the cyclopentadienyl ligand. Thus, the endo and the exo complexes may be designated $1 S$ and $1 R$, respectively [33]. It is interesting that no face selectivity was observed; whereas, in the case of monocyclopentadienyl metal complexes of the nonphenylated fused bornylcyclopentadiene, a moderate face selectivity of ca. 3:1 was found on complexation to $\mathrm{Co}(\mathrm{CO})_{2}[34]$. We attribute the lack of face selectivity to the much high temperature utilised in the synthesis of these triphenyl substituted cyclopentadienyl complexes coupled with the fact that the longer rhodium-cyclopentadienyl bond distance, compared to that of cobalt, allows the rhodium to be less discriminating between the steric demands of the two faces of the ligand.

Attempts were made to separate the endo and exo isomers by a variety of chromatographic techniques LPLC, TLC, and HPLC, but the mixture remained intractable. The isomers were fortuitously separated by a series of crystallisations from heptane and diisopropyl ether.

Fig. 1. Molecular structure of $\left.\operatorname{Rh}\left\{\eta^{5}-\mathrm{Cp}^{\prime}\right\}(\operatorname{cod})\right\} \quad 7 \mathbf{a} \quad\left[\mathrm{Cp}^{\prime}=\right.$ endo-(4S,7R)-1,2,3-triphenyl-4,8,8-trimethyl-1 $H, 4,5,6,7$-tetrahydro-4,7methanoindenyl] showing the atomic numbering system.

Both the ${ }^{1} \mathrm{H}\left\{{ }^{13} \mathrm{C}\right\}$ NMR spectra of the endo-7a and exo-7b forms of the rhodium complex showed interesting differences. The most striking feature of the ${ }^{1} \mathrm{H}$ NMR spectra is the difference in the ${ }^{1} \mathrm{H}$ resonance frequencies of the methyl groups of the bornyl unit. The methyl groups of the exo-complex give rise to signals at $\delta_{\mathrm{H}} 0.72,0.75$, and 0.95 ppm whereas the endo-complex gives signals at $\delta_{\mathrm{H}} 0.96,1.11$, and 2.07 ppm . Selective decoupling, NOE and two-dimensional NMR experiments indicated that the high-frequency shift of one of the methyl groups in the endo-complex (7a) is due to shielding of the protons attached to $\mathrm{C}(37)$ (Fig. 1) from the olefinic double bonds of the cycloocta-1,5-diene ligand.

The most remarkable feature of the ${ }^{13} \mathrm{C}$ NMR spectra of the two complexes is the range of resonance frequencies displayed by the exo-complex. Thus, whereas in the endo-complex the signals for the CH_{2} carbon atoms appear at $\delta_{\mathrm{C}} 27.2$ and 34.3 ppm , the corresponding signals are at $\delta_{\mathrm{C}} 29.0$ and 38.6 ppm in the exo-complex. Similarly, in the endo-complex, the nonproton bearing carbon atoms of the chiral group, $\mathrm{C}(33)$ and
$\mathrm{C}(34)$, are located at $\delta_{\mathrm{C}} 51.6$ and 54.6 ppm , whereas in the exo-complex these signals appear at $\delta_{\mathrm{C}} 51.4$ and 68.4 ppm . Further, the signals associated with the cyclopentadienyl carbon atoms occur in the range δ_{C} 91-117 ppm for the endo- complex, which is typical for a cyclopentadienylrhodium(I) complex [35]; whereas, the signals for the exo-complex are spread over a much larger range with one signal at $\delta_{\mathrm{C}} 127 \mathrm{ppm}$.

Oxidation of the rhodium cyclooctadiene complexes $7 \mathbf{a}$ and $7 \mathbf{b}$ with bromine gave the corresponding rhodium (III) complexes $\left[\left\{\operatorname{Rh}\left(\mathrm{Cp}^{\prime}\right)\right\}_{2}\left(\mu-\mathrm{Br}_{3}\right)\right] \mathrm{Br}_{3} \mathbf{8 a}$ and $\mathbf{8 b}$. These were characterised by elemental analysis, NMR and mass spectroscopy. Both $8 \mathbf{a}$ and $\mathbf{8 b}$ are active hydrogenation catalysts, and their use as enantioselective hydrogenation catalysts will be reported together with studies using related chiral cyclopentadienyl rhodium complexes [36].

2.3. X-ray crystallographic structures of $7 \boldsymbol{a}$ and $7 \boldsymbol{b}$

It is an interesting crystallographic nicety that the endo- and exo-fused ($4 S$)-bornyl structures crystallise in the same space group, and with very similar unit cell

Fig. 2. Molecular structure of $\left.\operatorname{Rh}\left\{\eta^{5}-\mathrm{Cp}^{\prime}\right\}(\operatorname{cod})\right\} \mathbf{7 b}\left[\mathrm{Cp}^{\prime}=\right.$ exo-(4S,7R)-1,2,3-triphenyl-4,8,8-trimethyl-1 $H, 4,5,6,7-$ tetrahydro-4,7-methanoindenyl] showing the atomic numbering system.
constants-to such an extent that initial thoughts were that the two structures were identical. However, the structures are in no way isomorphous, since the sites of the two rhodium atoms are entirely different with respect to the internal symmetry elements. The two structures are shown in Figs. 1 and 2. Table 1a and b list the positional parameters with estimated standard deviations for the endo- and exo- isomers, respectively, and the corresponding selected bond distances and bond angles are presented in Table 2a and b .

Both the exo- and endo-forms of the complex consist of planar C_{5} rings with three phenyl substituents inclined to the cyclopentadienyl ring in a similar propeller array, i.e., at angles of 50,62 and 15° for the exo- and at angles of 49,63 and 16° for the endo-isomer. The small inclination of the phenyl adjacent to the side of the ($4 S$)-bornyl fragment which does not carry a methyl substituent is noteworthy. Also, unlike the other phenyl substituents, this phenyl is displaced out of the cyclopentadienyl plane towards the metal with the ipso carbon atoms of phenyl groups deviating from the mean plane by $0.063 \AA$ and $0.054 \AA$ for the exo- and endoisomers, respectively. In both complexes, the conformation of the phenyl propellers appears to be dictated by the methyl group on the bornyl fragment. Thus, in the exo- and endo-isomers, the shortest carbon-carbon distance between this carbon and the adjacent phenyl ring is an acceptable 3.37 and $3.38 \AA$ respectively, whereas in both isomers this would have been unacceptably short if the phenyl groups had adopted the alternative propeller conformation.

The distance of the rhodium atom from the cyclooctadiene ligand is essentially the same in both isomers, but the distance of the rhodium atom from the cyclopentadienyl plane is $1.917 \AA$ in the exo- isomer and 1.933 \AA in the endo-isomer. In both cases, the cyclopentadienyl ring is bonded slightly asymmetrically to the rhodium, with the two carbons forming a junction with the ($4 S$)-bornyl fragment somewhat more remotely sited. This is more pronounced in the case of the endoisomer with deviations of 0.52 and $0.57 \AA$ in the $\mathrm{Rh}-\mathrm{C}$ distances compared to 0.34 and $0.33 \AA$ for the exostructure.

2.4. Circular dichroism studies

Polarimetry studies of the endo- and exo-complexes 7a and 7b respectively, showed that the endo-form is dextrorotatory and the exo- form is levorotatory. Thus, the optical activity of the complex is not only dependent upon the fused chiral substituent but also depends upon the planar chirality of the complex, i.e., which face of the C_{5} ring is bound to the rhodium atom. This marked difference in the chiro-optical behaviour of the complexes is also reflected in their circular dichroism spectra. The UV spectrum of the endo-form has $\lambda_{\text {max }}$ at 264 $\mathrm{nm}(\varepsilon=32300)$ while the maximum Cotton effect are
at $216 \mathrm{~nm}(\Delta \varepsilon-22), 230 \mathrm{~nm}(\Delta \varepsilon+36), 258 \mathrm{~nm}$ $(\Delta \varepsilon+9)$, and $303 \mathrm{~nm}(\Delta \varepsilon+19)$. The exo-form has $\lambda_{\max } 254 \mathrm{~nm}(\varepsilon=38400)$ with Cotton effect maxima at $220 \mathrm{~nm}(\Delta \varepsilon+22), 237 \mathrm{~nm}(\Delta \varepsilon-7), 263 \mathrm{~nm}(\Delta \varepsilon-$ 18), and $290 \mathrm{~nm}(\Delta \varepsilon-26)$.

These two CD spectra (Fig. 3) display pseudo enantiomorphic behaviour at longer wavelengths. It should be noted that similar behaviour was observed for the chiral tetraphenylcyclopentadienyl complexes $\mathrm{Rh}\left(\mathrm{C}_{5} \mathrm{Ph}_{4} \mathrm{R}^{*}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$ where $\mathrm{R}^{*}=$ menthyl or neomenthyl [23]. In the case of the tetraphenylcyclopentadienyl complexes, the metal is complexed to the same face, and the pseudo-enantiomorphic behaviour observed in the circular dichroism spectra is due to the effect of the chiral-directing groups menthyl and neomenthyl. The bornylcyclopentadienyl complexes contain identical chiral ligands; consequently, the pseudoenantiomorphic behaviour in the CD spectra is due to the fact that the rhodium is complexed to opposite faces of the C_{5} ring.

3. Experimental

3.1. General

All reactions of moisture-sensitive reagents were performed under nitrogen. THF was heated under reflux over sodium benzophenone ketyl and distilled under nitrogen. Benzene, xylene and diethyl ether were heated under reflux over sodium and distilled under nitrogen whereas triethylene glycol was dried over calcium sulphate. All other solvents and reagents were used without purification. NMR spectra were recorded on a Bruker AM250 spectrometer. Low-resolution mass spectra were obtained on a Kratos MS80 fitted with a FAB source operating through a DS55 data system. UV spectra were recorded on a Perkin Elmer 559 UV/VIS spectrophotometer. Optical rotations were measured on a Perkin Elmer 141 polarimeter, and CD spectra were obtained by the National CD Service SERC Birkbeck College, University of London. Elemental analysis were performed by the University of Sheffield microanalysis service.

3.2. Synthesis of (- -camphorquinone, 2

This was prepared in 65% yield by the literature method [37]. M.p. $194-195^{\circ} \mathrm{C}$ lit. $198^{\circ} \mathrm{C}$. (Found: C, $72.9 ; \mathrm{H}, 8.3$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{C}, 72.3 ; \mathrm{H}, 8.5 \%$); $[\alpha]_{\mathrm{D}}\left(20^{\circ} \mathrm{C}, l=0.1, c=1.270, \mathrm{CHCl}_{3}\right)-107.9 \mathrm{~d} ; \delta_{\mathrm{H}}$ (250 MHz ; solvent CDCl_{3}; standard SiMe_{4}) $0.94(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.64$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.93$ and $2.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.64(1 \mathrm{H}$, $\left.\mathrm{d}, J_{\mathrm{HH}} 5.5 \mathrm{~Hz}\right) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}\right.$; solvent CDCl_{3}, standard $\left.\mathrm{SiMe}_{4}\right) 8.4,17.0$, and $20.6\left(\mathrm{CH}_{3}\right), 29.6$ and $21.9\left(\mathrm{CH}_{2}\right)$, 57.7 (CH), 42.2 and 58.3 (C), 202.4 and 204.4 (C, carbonyl).

Table 1
(a) Atom coordinates $\left(\times 10^{4}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for $\left(\eta^{4}\right.$-cycloocta-1,5-diene) endo- η^{5}-(4S,7R)-1,2,3-triphenyl-4,8,8-trimethyl1 H,4,5,6,7-tetrahydro-4,7-methanoindenyl]rhodium 7a

Atom	x	y	z	$U_{\text {eq }}^{\text {a }}$
Rh(1)	2389(1)	1579(1)	1723(1)	34(1)
C(1)	1856(5)	869(5)	2913(4)	35(2)
C(2)	2423(4)	1686(4)	3135(3)	33(2)
C(3)	3447(5)	1492(5)	2867(4)	39(2)
C(4)	3467(5)	626(5)	2476(5)	41(3)
C(5)	2482(5)	237(4)	2463(4)	37(2)
C(6)	2220(5)	-705(5)	2146(5)	45(3)
C(7)	2523(7)	-988(4)	1347(4)	55(3)
C(8)	2274(7)	- 1866(5)	1058(5)	74(4)
C(9)	1739(7)	-2463(5)	1556(7)	85(4)
C(10)	1445(7)	-2197(6)	2353(7)	80(4)
C(11)	1693(5)	- 1321(5)	2638(6)	58(3)
C(12)	823(4)	646(4)	3172(5)	38(2)
C(13)	84(5)	440(6)	2600(6)	49(3)
C(14)	-844(6)	165(6)	2870(5)	59(3)
C(15)	- 1055(6)	81(5)	3716(6)	62(3)
C(16)	-327(6)	276(6)	4292(6)	71(4)
C(17)	591(6)	572(5)	4030(5)	51(3)
C(18)	2083(5)	2545(5)	3569(4)	42(3)
C(19)	1079(6)	2789(5)	3617(5)	48(3)
C(20)	777(6)	3595(5)	4008(5)	57(3)
$\mathrm{C}(21)$	1448(7)	4203(6)	4335(5)	67(4)
C(22)	2436(8)	3973(6)	4299(5)	77(4)
C(23)	2761(6)	3154(6)	3929(5)	60(3)
C(24)	2548(7)	2981(5)	1350(4)	54(3)
C(25)	1528(5)	2770(5)	1456(4)	46(3)
C(26)	830(7)	2670(6)	718(5)	66(3)
C(27)	761(6)	1679(6)	398(5)	74(3)
C(28)	1670(6)	1128(5)	619(5)	56(3)
C(29)	2644(7)	1387(5)	413(4)	61(3)
C(30)	2879(7)	2278(7)	-78(5)	77(4)
C(31)	3035(7)	3098(6)	499(5)	75(4)
C(32)	4503(5)	1711(6)	3129(4)	54(3)
C(33)	5115(6)	1219(6)	2429(6)	58(3)
C(34)	4549(6)	286(6)	2510(6)	55(3)
C(35)	4644(7)	86(6)	3484(6)	77(4)
C(36)	4645(7)	1063(7)	3902(5)	76(4)
C(37)	5075(5)	1676(6)	1562(5)	70(3)
C(38)	6234(6)	1159(8)	2674(7)	97(5)
C(39)	4861(6)	-499(6)	1935(6)	82(4)

(b) Atom coordinates $\left(\times 10^{4}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for (η^{4}-cycloocta-1,5-diene) $\left[\right.$ exo- η^{5}-($4 S, 7 R$)-1,2,3-triphenyl-4,8,8-trimethyl$1 \mathrm{H}, 4,5,6,7$-tetrahydro-4,7-methanoindenyl]rhodium 7b

Atom	x	y	z	$U_{\mathrm{eq}}^{\mathrm{a}}$
$\mathrm{Rh}(1)$	$-146(1)$	$-879(1)$	$-838(1)$	$27(1)$
$\mathrm{C}(1)$	$21(4)$	$-161(3)$	$-2185(3)$	$30(1)$
$\mathrm{C}(2)$	$-615(3)$	$331(3)$	$-1574(3)$	$29(1)$
$\mathrm{C}(3)$	$-27(3)$	$543(2)$	$-763(3)$	$27(1)$
$\mathrm{C}(4)$	$976(3)$	$243(3)$	$-930(4)$	$29(1)$
$\mathrm{C}(5)$	$1003(3)$	$-177(3)$	$-1781(3)$	$28(1)$
$\mathrm{C}(6)$	$-241(4)$	$-478(3)$	$-3125(3)$	$35(1)$
$\mathrm{C}(7)$	$-721(4)$	$55(4)$	$-3757(4)$	$47(2)$
$\mathrm{C}(8)$	$-934(5)$	$-243(5)$	$-4640(4)$	$60(2)$
$\mathrm{C}(9)$	$-688(5)$	$-1061(5)$	$-4891(4)$	$62(2)$
$\mathrm{C}(10)$	$-201(5)$	$-1586(4)$	$-4290(4)$	$61(2)$
$\mathrm{C}(11)$	$14(5)$	$-1301(3)$	$49(2)$	
$\mathrm{C}(12)$	$-1634(3)$	$64(3)$	$-1821(3)$	$30(1)$
$\mathrm{C}(13)$	$-2410(4)$	$379(4)$	$-2001(4)$	$39(2)$
$\mathrm{C}(14)$	$-3350(4)$	$-2270(5)$	$-2347(4)$	$51(2)$
$\mathrm{C}(15)$	$-3506(5)$		$54(2)$	

Table 1 (continued)
(b) Atom coordinates $\left(\times 10^{4}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for (η^{4}-cycloocta-1,5-diene) [exo- η^{5}-($4 S, 7 R$)-1,2,3-triphenyl-4,8,8-trimethyl1 H,4,5,6,7-tetrahydro-4,7-methanoindenyl]rhodium 7b

Atom	x	y	z	$U_{\mathrm{eq}}^{\mathrm{a}}$
$\mathrm{C}(16)$	$-2750(5)$	$1804(4)$	$-2171(4)$	$56(2)$
C(17)	$-1804(4)$	$-1911(4)$	$75(2)$	
C(18)	$-377(3)$	$1501(4)$	$76(3)$	$31(1)$
C(19)	$-1394(4)$	$1007(3)$	$290(4)$	$43(2)$
C(20)	$-1704(4)$	$1096(4)$	$1094(4)$	$52(2)$
C(21)	$-1019(5)$	$1491(4)$	$1707(4)$	$54(2)$
C(22)	$-13(5)$	$1811(4)$	$1512(4)$	$61(2)$
C(23)	$298(4)$	$1729(4)$	$708(4)$	$41(2)$
C(24)	$2077(4)$	$1344(4)$	$-647(4)$	$47(2)$
C(25)	$2498(4)$	$363(4)$	$-410(4)$	$50(2)$
C(26)	$2525(4)$	$-541(4)$	$-1354(4)$	$47(2)$
C(27)	$2106(4)$	$-1001(4)$	$-2039(4)$	$61(2)$
C(28)	$2531(4)$	$-329(4)$	$-1626(4)$	$65(3)$
C(29)	$2116(5)$	$529(4)$	$-1613(5)$	$56(2)$
C(30)	$3688(4)$	$1353(4)$	$-3061(4)$	$41(2)$
C(31)	$2337(4)$	$584(5)$	$344(4)$	$42(2)$
C(32)	$-1049(4)$	$-494(5)$	$573(3)$	$64(2)$
C(33)	$-40(4)$	$-1099(3)$	$714(5)$	$69(2)$
C(34)	$427(5)$	$-1230(4)$	$-98(5)$	$50(2)$
C(35)	$271(6)$	$-2102(4)$	$-1003(4)$	$48(2)$
C(36)	$69(5)$	$-2695(4)$	$-1287(4)$	$64(2)$
C(37)	$-905(5)$	$-2221(3)$	$-729(5)$	$60(2)$
C(38)	$-1844(5)$	$-1980(4)$	$241(4)$	
C(39)	$-1793(5)$	$-2170(4)$		

${ }^{\text {a }}$ Equivalent isotropic U defined as one-third of the trace of the orthogonalised $U_{i j}$ tensor.
3.3. Synthesis of (-)-(4S,7R)-1,3-diphenyl-4,8,8-tri-methyl-2H,4,5,6,7-tetrahydro-4,7-methanoinden-2-one, 3

This was synthesised by a modification of the literature procedure [26]. (-)-Camphorquinone ($20 \mathrm{~g}, 0.12$ $\mathrm{mol})$ and dibenzylketone ($25.3 \mathrm{~g}, 0.12 \mathrm{~mol}$) were dissolved in hot triethylene glycol ($100 \mathrm{~cm}^{3}$) and heated to $130^{\circ} \mathrm{C}$ under nitrogen. Benzyltrimethylammonium hydroxide in methanol (40%) (Triton B, Aldrich) $\left(13 \mathrm{~cm}^{3}\right)$ was added via a hypodermic syringe and the reaction was stirred at $125^{\circ} \mathrm{C}$ for 90 h . The mixture was allowed to cool, poured into water $\left(400 \mathrm{~cm}^{3}\right)$ and then extracted into ether ($400 \mathrm{~cm}^{3}$); salt was required to break down the emulsion. The combined organic phase was washed with water, $\mathrm{HCl}(2 \mathrm{M}), 5 \% \mathrm{NaOH}$, and saturated NaCl solution then dried over CaCl_{2}. Removal of the solvent in vacuo yielded a red oil. This was chromatographed twice (silica, petrol b.p. $60-80^{\circ} \mathrm{C}$) to give the product as a red oil which crystallised on standing ($22 \mathrm{~g}, 54 \%$), m.p. $110^{\circ} \mathrm{C}$ lit. [37] $111-112^{\circ} \mathrm{C}$. (Found: C, 88.4 ; H, 7.4. Calc. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O} \mathrm{C}, 88.2$; $\mathrm{H}, 7.1$); i.r. ν_{CO} at $1718 \mathrm{~cm}^{-1}$ (petrol); $[\alpha]\left(20^{\circ} \mathrm{C}, l=0.1, c=0.0692\right.$, $\left.\mathrm{CDCl}_{3}\right)(589 \mathrm{~nm})-28.9,(578 \mathrm{~nm})-57.8,(546 \mathrm{~nm})$ -72.3 , and (436 nm) $+794.8 \mathrm{~d} ; \mathrm{m} / \mathrm{z}$ EI $340\left[(\mathrm{M})^{+}\right.$ $(100 \%)] ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$, solvent CDCl_{3}, standard $\left.\mathrm{SiMe}_{4}\right) 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.15(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3}\right), 1.64-2.29\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 350\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 4.6\right.$
$\mathrm{Hz}, \mathrm{CH}), 7.17-7.43$ and $7.69-7.71$ ($10 \mathrm{H}, \mathrm{m}$, aromatic); δ_{C} (63 MHz ; solvent CDCl_{3}; standard SiMe_{4}) 12.1, 17.2, and $21.4\left(\mathrm{CH}_{3}\right), 25.9$ and $34.7\left(\mathrm{CH}_{2}\right) ; 48.6(\mathrm{CH})$; 50.2 and 51.2 (C), 126.0-130.2 (CH, aromatic), 115.6, $118.6,130.9,132.0,164.6$, and 165.8 (C, aromatic), 202.9 (C, carbonyl).
3.4. Synthesis of (-)-(2R,4S,7R)-1,2,3-triphenyl-4,8,8-trimethyl-2H,4,5,6,7-tetrahydro-4,7-methanoinde-2-ol, 4

A solution of phenyl magnesium bromide, prepared from bromobenzene ($4 \mathrm{~g}, 25.2 \mathrm{mmol}$) in ether ($80 \mathrm{~cm}^{3}$) and magnesium (6 g) in ether ($20 \mathrm{~cm}^{3}$), was added under nitrogen through a dropping funnel to a stirred solution of (-)-($4 S, 7 R$)-1,3-diphenyl-4,8,8-trimethyl$2 H, 4,5,6,7$-tetrahydro-4,7-methanoinden-2-one (4.3 g , $12.6 \mathrm{mmol})$ in benzene ($100 \mathrm{~cm}^{3}$). When addition was complete, the mixture was heated to $40^{\circ} \mathrm{C}$ for 3 h . After cooling, sulphuric acid was added slowly ($100 \mathrm{~cm}^{3} 0.5$ M) followed by ether $\left(100 \mathrm{~cm}^{3}\right)$. The mixture was then transferred to a separating funnel and the aqueous layer removed. The organic phase was washed with water $\left(2 \times 200 \mathrm{~cm}^{3}\right)$, dried over MgSO_{4} and the solvent removed in vacuo. The crude product was chromatographed (silica, petrol b.p. $60-80^{\circ} \mathrm{C}: 5 \%$ ether) to give the carbinol as a pale yellow foam ($4.3 \mathrm{~g}, 82 \%$). (Found: C, 88.4; H, 7.4. $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}$ requires C, 88.9; H, $7.2 \%) ;[\alpha]\left(20^{\circ} \mathrm{C}, l=1.0, c=0.604, \mathrm{CHCl}_{3}\right)(589 \mathrm{~nm})$
$-7.95,(578 \mathrm{~nm})-9.3,(546 \mathrm{~nm})-13.6$, and $(436 \mathrm{~nm})$ $-69.0^{\circ} ; \mathrm{m} / \mathrm{z}$ EI $418\left[(\mathrm{M})^{+}(58 \%)\right], 403\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}\right.$ $(23 \%)], 342\left[(\mathrm{M}-\mathrm{Ph})^{+}(100 \%)\right] ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$, solvent CDCl_{3}, standard $\left.\mathrm{SiMe}_{4}\right) 0.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.99(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.61-1.80,1.85-1.95$, and
$2.15-2.34\left(1 \mathrm{H}, 1 \mathrm{H}\right.$, and $\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.70(1 \mathrm{H}, \mathrm{s}$, $\mathrm{COH}), 3.06\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 4.4 \mathrm{~Hz}, \mathrm{CH}\right), 7.01-7.34(15 \mathrm{H}$, m , aromatic); $\delta_{\mathrm{C}}\left(63 \mathrm{MHz}\right.$; solvent CDCl_{3}; standard $\left.\mathrm{SiMe}_{4}\right) 12.3,17.7$, and $21.0\left(\mathrm{CH}_{3}\right), 26.3$ and 34.7 $\left(\mathrm{CH}_{2}\right), 48.9(\mathrm{CH}), 49.8$ and $52.3(\mathrm{C}), 95.3(\mathrm{PhCOH})$,

Table 2
(a) Selected bond lenghts (\AA) and bond angles (deg) for $\left(\eta^{4}-\right.$ cycloocta-1,5-diene) [endo- $\eta^{5}-(4 S, 7 R)-1,2,3$-triphenyl-4,8,8-trimethyl-1 $H, 4,5,6,7-$ tetrahydro-4,7-methanoindenyl]rhodium 7a

Selected bond lengths $\left(\AA^{\circ}\right)$	
$\mathrm{Rh}(1)-\mathrm{C}(1)$	$2.271(7)$
$\mathrm{Rh}(1)-\mathrm{C}(3)$	$2.320(7)$
$\mathrm{Rh}(1)-\mathrm{C}(5)$	$2.276(7)$
$\mathrm{Rh}(1)-\mathrm{C}(25)$	$2.126(8)$
$\mathrm{Rh}(1)-\mathrm{C}(29)$	$2.131(7)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.439(9)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.401(11)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.516(13)$
$\mathrm{C}(24)-\mathrm{C}(31)$	$1.516(12)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.527(12)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.410(13)$

$\mathrm{Rh}(1)-\mathrm{C}(2)$	$2.252(6)$
$\mathrm{Rh}(1)-\mathrm{C}(4)$	$2.340(8)$
$\mathrm{Rh}(1)-\mathrm{C}(24)$	$2.127(7)$
$\mathrm{Rh}(1)-\mathrm{C}(28)$	$2.112(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.455(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.478(9)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.449(10)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.425(12)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.515(11)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.510(12)$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.542(12)$

Selected bond angles $($ deg $)$			
C(2)-C(1)-C(5)			
C(5)-C(1)-C(12)	$109.2(6)$	$\mathrm{C}(1)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(3)$	$127.1(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(18)$	$123.4(6)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(18)$	$105.7(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$128.8(6)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(32)$	$125.5(6)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(32)$	$108.5(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$139.7(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(34)$	$106.8(6)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(34)$	$109.7(6)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$106.8(6)$	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	$138.5(7)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$106.7(5)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(31)$	$127.4(6)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$125.3(6)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$123.5(7)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$122.3(7)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$112.8(7)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$111.7(7)$	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$124.6(7)$
$\mathrm{C}(24)-\mathrm{C}(31)-\mathrm{C}(30)$	$122.2(7)$		$112.3(7)$

(b) Selected bond lengths (\AA) and bond angles (deg) for (η^{4}-cycloocta-1,5-diene) [exo- η^{5}-($4 S, 7 R$)-1,2,3-triphenyl-4,8,8-trimethyl-1 $H, 4,5,6,7-$ tetrahydro-4,7-methanoindenyl]rhodium 7b

Selected bond lengths $\left(A^{\circ}\right)$	
$\operatorname{Rh}(1)-\mathrm{C}(1)$	$2.255(5)$
$\mathrm{Rh}(1)-\mathrm{C}(3)$	$2.227(5)$
$\mathrm{Rh}(1)-\mathrm{C}(5)$	$2.320(6)$
$\mathrm{Rh}(1)-\mathrm{C}(33)$	$2.114(6)$
$\mathrm{Rh}(1)-\mathrm{C}(37)$	$2.095(7)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.430(7)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.435(6)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.398(8)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.508(10)$
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.410(9)$
$\mathrm{C}(38)-\mathrm{C}(39)$	$1.495(10)$

Selected bond angles (deg)			
C(2)-C(1)-C(5)	$107.2(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$126.7(4)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(6)$	$125.6(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107.4(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	$123.9(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(12)$	$128.3(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.0(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(18)$	$127.0(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(18)$	$126.0(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$109.0(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(24)$	$143.6(4)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(24)$	$105.6(4)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$109.2(4)$	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(27)$	$141.0(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(27)$	$108.2(4)$	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(34)$	$124.0(5)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$113.1(5)$	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$113.1(5)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$122.7(6)$	$\mathrm{C}(32)-\mathrm{C}(39)-\mathrm{C}(38)$	$123.4(5)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$113.0(5)$		$112.6(5)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(39)$	$122.4(5)$		

124.8-129.4 (CH, aromatic), 134.2, 134.3, 135.3, 139.9, $141.2,150.9$, and 151.4 (C aromatic).
3.5. Synthesis of $(-)-(2 R S, 4 S, 7 R)-1,2,3$-triphenyl-4,8,8-trimethyl-2H,4,5,6,7-tetrahydro-4,7-methanoindene, 5
(-)-(2 R, $4 S, 7 R$)-1,2,3-Triphenyl-4,8,8-trimethyl2 H,4,5,6,7-tetrahydro-4,7-methanoinden-2-ol (4.3 g, 10
mmol) in glacial acetic acid ($100 \mathrm{~cm}^{3}$) was heated under reflux and concentrated hydrochloric acid (10 cm^{3}) was carefully added. After 4 h under reflux, zinc $(1.3 \mathrm{~g})$ was carefully added and heating was continued for 4 h . After cooling to room temperature, the mixture was partitioned between ether ($300 \mathrm{~cm}^{3}$) and water (500 $\left.\mathrm{cm}^{3}\right)$; the organic phase was washed with water $(3 \times 200$ $\left.\mathrm{cm}^{3}\right)$, saturated $\mathrm{NaHCO}_{3}\left(2 \times 200 \mathrm{~cm}^{3}\right)$, and water

Fig. 3. UV (---) and c.d. (—) spectra of endo-7a and -7b.
$\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The organic phase was then dried over MgSO_{4} and the solvent removed in vacuo to give a dark \tan oil. Repeated chromatography (silica, petrol b.p. $\left.60-80^{\circ} \mathrm{C}\right)$ gave the product as a pale foam ($2.8 \mathrm{~g}, 70 \%$), m.p. $41-45^{\circ} \mathrm{C}$; (Found: C, 92.5 ; H, 7.3. $\mathrm{C}_{31} \mathrm{H}_{30}$ requires $\mathrm{C}, 92.5 ; \mathrm{H}, 7.5 \%)$; $[\alpha]\left(20^{\circ} \mathrm{C}, l=1.0, c=1.085\right.$, $\left.\mathrm{CHCl}_{3}\right)(589 \mathrm{~nm})-553.9,(578 \mathrm{~nm})-608.3$, $(546 \mathrm{~nm})$ -815.7 , and (436 nm) $-3580^{\circ} ; m / z$ EI $402\left[(\mathrm{M})^{+}\right.$ ($60 \%)$]; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$, solvent CDCl_{3}, standard SiMe_{4}) $0.55-2.40(13 \mathrm{H} \mathrm{m}), 2.70-3.50(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.50-5.18$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CpH}), 6.90-7.70\left(15 \mathrm{H}, \mathrm{m}\right.$, aromatic); $\delta_{\mathrm{C}}(63$ MHz , solvent CDCl_{3}, standard SiMe_{4}) 12.2, 18.5, 20.0 , $21.0,22.8$, and $23.5\left(\mathrm{CH}_{3}\right), 26.4,26.6,34.9$, and 35.3 $\left(\mathrm{CH}_{2}\right), 57.2$ and $64.6(\mathrm{C}), 125.2-131.2(\mathrm{CH}$, aromatic), 133.7-153.3 (C, aromatic).
3.6. Synthesis of (η^{4}-Cycloocta-1,5-diene) $\left[\mathrm{rac}(R S)-\eta^{5}\right.$ -1,2,3-triphenyl-4-methyl-7-isopropyl-1H-indenyllrhodium, 6, (+)-(η^{4}-cycloocta-1,5-diene) (endo- η^{5}-(4S,7R)-1,2,3-triphenyl-4,8,8-trimethyl-1H,4,5,6,7-tetrahydro-4,7-methanoindenyllrhodium, 7a, and (-) $\left(\eta^{4}\right.$-cyclo-octa-1,5-diene) [exo- η^{5}-(4S,7R)-1,2,3-triphenyl-4,8,8-trimethyl-1H,4,5,6,7-tetrahydro-4,7-methanoindenyl]rhodium, $7 \boldsymbol{b}$

A solution of (-)-(2 RS,4S,7R)-1,2,3-triphenyl-4,8,8-trimethyl-2H,4,5,6,7-tetrahydro-4,7-methanoindene $(4.73 \mathrm{~g}, 11.8 \mathrm{mmol})$ in xylene $\left(200 \mathrm{~cm}^{3}\right)$ was heated to $125^{\circ} \mathrm{C}$ under nitrogen. Butyl lithium in hexane (Aldrich) $\left(4.6 \mathrm{~cm}^{3}, 2.59 \mathrm{M}, 11.9 \mathrm{mmol}\right)$ was added via a hypodermic syringe and, after stirring for 2 h , di- μ chlorobis(η^{4}-cyclooctadiene)dirhodium $(2.95 \mathrm{~g}, \quad 6$ mmol) was added. The mixture was stirred for a further 2 h , allowed to cool and filtered. After removal of the solvent in vacuo, chromatography (silica, petrol b.p. $60-80^{\circ} \mathrm{C}$) of the residue gave two products. The major, slower moving component was recrystallised from diisopropyl ether to give small yellow crystals of (η^{4} -cycloocta-1,5-diene)- $\quad \operatorname{rac}(R S)\left(\eta^{5}-1,2,3\right.$-triphenyl-4-methyl-7-isopropyl-1 H-indenyl)rhodium, $6(5.0 \mathrm{~g}$, 70%), m.p. $>210^{\circ} \mathrm{C}$ (decomp.); (Found: C, 76.6; H, 6.2. $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{Rh}$ requires $\mathrm{C}, 76.7 ; \mathrm{H}, 6.4 \%$) ; $m / z+\mathrm{FAB}$ argon $610\left[(\mathrm{M})^{+}(100 \%)\right], 500\left[(\mathrm{M}-\mathrm{COD})^{+}(23 \%)\right] ; \delta_{\mathrm{H}}$ (250 MHz , solvent CDCl_{3}, standard SiMe_{4}) $1.02(3 \mathrm{H}$, $\left.\mathrm{d}, J_{\mathrm{HH}} 6.5 \mathrm{~Hz} \mathrm{CH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.87\left(1 \mathrm{H}\right.$, septet, $J_{\mathrm{HH}} 6.5 \mathrm{~Hz}$, $\mathrm{C} H \mathrm{Me}_{2}$), 1.76-2.33 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{COD}$), 3.85-4.09 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{COD}$), 6.85-7.40 ($15 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ aromatic); δ_{C} (63 MHz ; solvent CDCl_{3}; standard SiMe_{4}) 22.0, 24.0, and $27.9\left(\mathrm{CH}_{3}\right), 24.8(\mathrm{CH}), 31.5-31.7\left(\mathrm{CH}_{2}\right.$ COD), $71.2\left(J_{\text {CRh }} 13.9 \mathrm{~Hz}\right.$) and $72.2\left(J_{\text {CRh }} 13.5 \mathrm{~Hz}\right)(\mathrm{CH}$ COD), 96.2, $98.3,107.2,108.6$, and 118.8 (C cyclopentadienyl), 119.1 and $124.8-132.7$ (CH aromatic), 134.7-140.0 (C aromatic).

The minor, faster moving product was an endo:exo 1:1 mixture of (η^{4}-cycloocta-1,5-diene)[η^{5}-($4 S, 7 R$)-

1,2,3-triphenyl-4,8,8-trimethyl- $1 \mathrm{H}, 4,5,6,7$-tetrahydro-4,7-methanoindenyl]rhodium 7a and 7b ($1.5 \mathrm{~g}, 20 \%$) m.p. $201-205^{\circ} \mathrm{C}$; (Found: C, 76.9; H, 6.9. $\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{Rh}$ requires $\mathrm{C}, 76.5 ; \mathrm{H}, 6.8 \%$). These were separated as follows: repeated crystallisation from heptane gave the exo-form and repeated crystallisation from diisopropyl ether of the mother liquid from the first heptane crystallisation gave the endo-form.
(+)-(η^{4}-Cycloocta-1,5-diene)[endo $\quad \eta^{5}$-($4 S, 7 R$)-1,2,3-triphenyl-4,8,8-trimethyl- $1 \mathrm{H}, 4,5,6,7$-tetrahydro-4,7-methanoindenyl]rhodium 7a. [α] $\left(20^{\circ} \mathrm{C}, l=0.1, c\right.$ $\left.=1.043, \mathrm{CHCl}_{3}\right)(589 \mathrm{~nm})+413.8,(578 \mathrm{~nm})+438.2$, and $(546 \mathrm{~nm})+518.7 \mathrm{~d} ; m / z+$ FAB argon $612\left[(\mathrm{M})^{+}\right.$ $(100 \%)] ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$; solvent CDCl_{3}; standard $\left.\mathrm{SiMe}_{3}\right) 0.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.07(3 \mathrm{H}$, s, $\left.\mathrm{CH}_{3}\right), 1.59-2.48\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.10(1 \mathrm{H}, \mathrm{d}, \mathrm{CH})$, $3.62(4 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{COD}), 6.65-7.45(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ aromatic); $\delta_{\mathrm{C}}\left(63 \mathrm{MHz}\right.$; solvent CDCl_{3}; standard SiMe_{4}) 13.8, 20.1, and $20.8\left(\mathrm{CH}_{3}\right), 27.2$ and $34.3\left(\mathrm{CH}_{2}\right), 30.9$ and $32.3\left(\mathrm{CH}_{2} \mathrm{COD}\right), 49.6(\mathrm{CH}), 51.6$ and $54.6(\mathrm{C})$, 69.5 and $70.1\left(J_{\text {CRh }} 14 \mathrm{~Hz}\right), 91.2\left(J_{\text {CRh }} 3.5 \mathrm{~Hz}\right), 96.9$ $\left(J_{\text {CRh }} 3.2 \mathrm{~Hz}\right), 108.8\left(J_{\text {CRh }} 4.9 \mathrm{~Hz}\right), 114.9\left(J_{\text {CRh }} 4.8\right.$ $\mathrm{Hz})$, and $116.9\left(J_{\mathrm{CRh}} 4.5 \mathrm{~Hz}\right)(\mathrm{C}$ cyclopentadienyl), 125.6, 125.7, and 126.0 ($\mathrm{CH} p$ aromatic), 127.2, 127.5, 127.6, 128.5, 130.4, and 133.1 ($\mathrm{CH} m$ and o aromatic), 134.6, 134.9, and 136.3 (C aromatic).
(-)-(η^{4}-Cycloocta-1,5-diene) [exo $\quad \eta^{5}$-($4 S, 7 R$)-1,2,3-triphenyl-4,8,8-trimethyl- $1 \mathrm{H}, 4,5,6,7$-tetrahydro4,7 -methanoindenyl]rhodium $7 \mathbf{b}$. $[\alpha]\left(20^{\circ} \mathrm{C}, l=0.1, c\right.$ $\left.=1.043, \mathrm{CHCl}_{3}\right)(589 \mathrm{~nm})-466.0,(578 \mathrm{~nm})-492.8$, and (546 nm) $-589.6 \mathrm{~d} ; m / z+$ FAB argon $612\left[(\mathrm{M})^{+}\right.$ $(100 \%)] ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$; solvent CDCl_{3}; standard SiMe_{4}) $0.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.95(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.75-1.89$ and $1.98-2.48\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.82$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CH}), 3.51-3.68(4 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{COD}), 6.90-6.97$, $7.02-7.24$, and $7.32-7.38$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ aromatic); δ_{C} (63 MHz ; solvent CDCl_{3}; standard SiMe_{4}) 13.0, 20.8, and $21.9\left(\mathrm{CH}_{3}\right), 29.0$ and $38.6\left(\mathrm{CH}_{2}\right) 31.1$ and 33.1 $\left(\mathrm{CH}_{2} \mathrm{COD}\right), 48.5(\mathrm{CH}), 51.4$ and $68.4(\mathrm{C}), 70.0\left(J_{\text {CRh }}\right.$ 13.6 Hz) and $70.2\left(J_{\text {CRh }} 13.8 \mathrm{~Hz}\right)(\mathrm{CH}$ COD), 98.7 $\left(J_{\text {CRh }} 5.4 \mathrm{~Hz}\right), 98.9\left(J_{\text {CRh }} 3.8 \mathrm{~Hz}\right), 102.7\left(J_{\text {CRh }} 3.6 \mathrm{~Hz}\right)$, 120.7 ($J_{\text {CRh }} 3.9 \mathrm{~Hz}$), and $127.0\left(J_{\text {CRh }} 3.7 \mathrm{~Hz}\right)(\mathrm{C}$ cyclopentadienyl), 125.7, 125.8, and 126.0 ($\mathrm{CH} p$ aromatic), 127.1, 127.4, 127.7, 129.7, 130.9, and 132.0 (CH o and m aromatic), 134.6, 135.5, and 135.8 (C aromatic).
3.7. Synthesis of (-)-tri- μ-bromobis[endo $\eta^{5}-(4 S, 7 R)$ -1,2,3-triphenyl-4,8,8-tri-methyl-1H,4,5,6,7-tetrahydro-4,7-methanoindenyl]dirhodium tribromide, 8 a
(+)-(η^{4}-Cycloocta-1,5-diene) [endo- η^{5}-(4 $S, 7 R$)-1,2,3-triphenyl-4,8,8- trimethyl- $1 H, 4,5,6,7$-tetrahydro4,7 -methanoindenyl]rhodium, 7 a ($69 \mathrm{mg}, 0.11 \mathrm{mmol}$) in ether $\left(10 \mathrm{~cm}^{3}\right)$ was treated with a solution of bromine in ether until no further product precipitated. The dark brick red precipitate was collected and washed with
pentane ($61 \mathrm{mg}, 81 \%$) m.p. $>240^{\circ} \mathrm{C}$ (Found: C, 51.9 ; $\mathrm{H}, 3.8 . \mathrm{C}_{62} \mathrm{H}_{58} \mathrm{Br}_{6} \mathrm{Rh}_{2}$ requires C , 50.03 ; $\mathrm{H}, 3.93 \%$); $[\alpha]\left(20^{\circ} \mathrm{C}, l=0.1, c=0.091, \mathrm{CHCl}_{3}\right)(589 \mathrm{~nm})-110$, $(578 \mathrm{~nm})-55$, $(546 \mathrm{~nm})-55$, and $(436 \mathrm{~nm})-286^{\circ}$; $m / z+$ FAB argon $1247\left[(\mathrm{M}-\mathrm{Br})^{+}(100 \%)\right], 1168[(\mathrm{M}-$ $\left.\left.\mathrm{Br}_{2}\right)^{+}(18 \%)\right], 585\left[(\mathrm{CpRhBr})^{+}(87 \%)\right] ; \mathrm{S}_{\mathrm{H}}(250 \mathrm{MHz} ;$ solvent $\mathrm{CDCl}_{3} ;$ standard $\left.\mathrm{SiMe}_{4}\right) 0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.57-1.69(1 \mathrm{H}$,
m), 1.78-1.91 ($2 \mathrm{H}, \mathrm{m}$), 1.98-2.15 ($1 \mathrm{H}, \mathrm{m}$) $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.94\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 4 \mathrm{~Hz}, \mathrm{CH}\right), 7.02-7.17$ and $7.26-7.70$ $\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ aromatic); $\mathrm{S}_{\mathrm{C}}\left(63 \mathrm{MHz}\right.$; solvent CDCl_{3}; standard $\left.\mathrm{SiMe}_{4}\right)$ 11.6, 20.5, and $28.2\left(\mathrm{CH}_{3}\right), 25.7$ and $32.9\left(\mathrm{CH}_{2}\right), 46.9(\mathrm{CH}), 51.6$ and $54.5(\mathrm{C}), 93.0\left(J_{\mathrm{CRh}} 6\right.$ $\mathrm{Hz})$, $94.3\left(J_{\text {CRh }} 13 \mathrm{~Hz}\right), 95.7\left(J_{\text {CRh }} 7 \mathrm{~Hz}\right)$, $109.7\left(J_{\text {CRh }}\right.$ $10 \mathrm{~Hz}), 110.3\left(J_{\mathrm{CRh}} 10 \mathrm{~Hz}\right)(\mathrm{C}$ cyclopentadienyl), 126.8-127.6 (C aromatic), 127.8-132.1 (CH aromatic).

Table 3
Crystallographic data for diffraction studies of endo- and exo- $\left(\eta^{4}\right.$-cycloocta- 1,5 -diene) $\left[\eta^{5}\right.$-($4 S, 7 R$)-1,2,3-triphenyl-4,8,8-trimethyl-1 $H, 4,5,6,7$-te-trahydro-4,7-methanoindenyl]rhodium 7a and 7b

	7a	7b
Crystal parameters		
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{Rh}$	$\mathrm{C}_{39} \mathrm{H}_{41} \mathrm{Rh}$
Molecular weight	$M=612.66$	$M=612.66$
Colour	Orange	Orange/yellow
Solvent	Pentane/methanol	Heptane/ether
Crystal size (mm)	$0.35 \times 0.275 \times 0.225$	$0.32 \times 0.36 \times 0.40$
Habit	Blocks	Blocks
Crystal system	Orthorhombic	Orthorhombic
Space group	$P 2{ }_{1} 1_{1} 1_{1}\left(D_{2}^{4}\right.$, No. 19)	$P 22_{1} 2_{1}\left(D_{2}^{4}\right.$, No. 19)
$a(\AA)$	13.549(23)	13.301(18)
$b(\AA)$	14.490(25)	15.599(32)
$c(\AA)$	15.909(14)	14.436(19)
$V\left(\AA^{3}\right)$	$U=3123$ (8)	$U=2995(10)$
Z	4	4
D (calcd) ($\mathrm{g} \mathrm{cm}^{-3}$)	1.303	1.359
$\mu\left(\mathrm{cm}^{-1}\right)$	5.61	5.85
$F(000)$	1279.86	279.86
Intensity data		
Diffractometer	Nicolet R3 4-circle	Stoe Stadi-2
$\lambda\left(\right.$ Mo K α_{α} radiation) (A)	0.71069	0.71069
Monochromator	Graphite, incident beam	Graphite, incident beam
Reflections measured	$+h,+k, \pm l$	$+h,+k, \pm l$
20 range (deg)	3.5-50	6.5-50
Temperature (${ }^{\circ} \mathrm{C}$)	20	20
Scan type	ω	ω
Scan speed (deg min ${ }^{-1}$)	4	0.6
Scan range (deg)	3	Variable
bkgd measurement	50\% scan time	50\% scan time
Standard reflections	1 in every 200	1 per layer
No. of reflections collected	3140	4840
No. of reflections used	2545	4620
Acceptance criterion	$\|F\| / \sigma(\|F\|)>3.0$	$\|F\| / \sigma(\|F\|)>3.0$
$R_{\text {merge }}$	0.0116	
Minimum transmission coefficient	0.612	0.72
Maximum transmission coefficient	0.629	0.83
abs method	Psi scans	Gaussian
Structure solution		
Method	Patterson/Fourier	Patterson/Fourier
Progams	SHELXTL ([38])	SHELXTL ([38])
Computer	Data General Nova 3	Data General Nova 3
Scattering factors	Ref. [39]	Ref. [39]
R	0.0488	0.0362
R_{w}	0.0413	
Weighting scheme	$w=\left[\sigma^{2}(F)+0.00034 F^{2}\right]^{-1}$	Unit weights
H refinement	Riding mode	Riding mode

3.8. Synthesis of (-)-tri- μ-bromobis[exo η^{5}-(4S,7R)-1,2,3-triphenyl-4,8,8-tri-methyl-1H,4,5,6,7-tetrahydro-4,7-methanoindenyl]dirhodium tribromide, $\mathbf{8 b}$

This dark red compound was prepared in 91% yield by an analogous procedure from $(-)-\left(\eta^{4}\right.$-cycloocta-1,5-diene) exo- η^{5}-(4S,7R)-1,2,3-triphenyl-4,8,8-trimeth-yl-1 $H, 4,5,6,7$-tetrahydro-4,7-methanoindenyl]rhodium, 7b m.p. $>240^{\circ} \mathrm{C}$; (Found: C, 52.0; H, 3.92; Br, 32.2. $\mathrm{C}_{62} \mathrm{H}_{58} \mathrm{Br}_{6} \mathrm{Rh}_{2}$ requires $\mathrm{C}, 50.03 ; \mathrm{H}, 3.93$; $\mathrm{Br}, 32.2 \%$); $[\alpha]\left(20^{\circ} \mathrm{C}, l=0.1, c=0.097, \mathrm{CHCl}_{3}\right)(589 \mathrm{~nm})-130$, $(578 \mathrm{~nm})-100$, $(546 \mathrm{~nm})-210$, and $(436 \mathrm{~nm})$ $-1160 \mathrm{~d} ; m / z+\mathrm{FAB}$ argon $1247\left[(\mathrm{M}-\mathrm{Br})^{+}(68 \%)\right]$, $1168\left[\left(\mathrm{M}-\mathrm{Br}_{2}\right)^{+}(12 \%)\right], 585\left[(\mathrm{CpRhBr})^{+}(100 \%)\right] ; \delta_{\mathrm{H}}$ (250 MHz ; solvent CDCl_{3}; standard SiMe_{4}) $1.05(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.05-$ 2.19, 2.29-2.44, 2.52-2.67, and 2.78-2.93 (8H, m, $\left.\mathrm{CH}_{2}\right), 2.82\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}} 4.5 \mathrm{~Hz}, \mathrm{CH}\right), 7.06-7.15$, $7.27-7.55$, and $7.71-7.79\left(30 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ aromatic); δ_{C} (63 MHz ; solvent CDCl_{3}; standard SiMe_{4}) 11.8 and $20.9\left(\mathrm{CH}_{3}\right), 27.8$ and $36.4\left(\mathrm{CH}_{2}\right), 46.2(\mathrm{CH}), 51.6$ and 62.4 (C), 94.0, 97.2, 98.3, 115.5, and 117.4 (C cyclopentadienyl), 126.5-127.1 (C aromatic), 127.7-132.5 (CH aromatic).

3.9. Crystal structure determination

Experimental details of X-ray data collection, and solution and refinement of the structures are summarised in Table 3. The crystal of $\mathbf{7 b}$ contained a disordered half molecule of solvent, $\mathrm{Et}_{2} \mathrm{O}$; the most successful model has this solvent disordered over three sets of positions. Tables of complete bond lengths and angles, anisotropic thermal parameters with e.s.d.'s and hydrogen atom positional parameters together with tables of observed and final calculated structure factors for 7a and 7b have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

We thank the EPSRC for a postgraduate studentship (to J.A.R.) and for the purchase of the diffractometer. Financial support from ICI Specialties is gratefully acknowledged and we are indebted to Dr. Alex F. Drake and colleagues at the EPSRC Chiroptical Spectroscopy service for recording the CD spectra.

References

[1] G. Erker, Pure Appl. Chem. 63 (1991) 797.
[2] R.L. Halterman, Chem. Rev. 92 (1992) 965, and references therein.
[3] R. Lai, S. Martin, Tetrahedron Asymmetry 7 (1996) 2783.
[4] G.A. Molander, H. Schumann, E.C.E. Rosenthal, J. Demtschuk, Organometallics 15 (1996) 3817.
[5] Y.L. Qian, J.L. Huang, T.S. Huang, S.S. Chen, Transition Met. Chem. 21 (1996) 393.
[6] K.B. Sinclair, R.B. Wilson, Chem. Ind. (1994) 857.
[7] M.A. Giardello, M.S. Eisen, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 117 (1995) 12114.
[8] H.H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R.M. Waymouth, Angew. Chem., Int. Ed. Engl. 34 (1995) 1143.
[9] Z. Chen, R.L. Haltermann, J. Am. Chem. Soc. 114 (1992) 2276.
[10] V.P. Conticello, L. Brard, M.A. Giarrdello, Y. Tsuji, M. Sabat, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 114 (1992) 2761.
[11] M.A. Giarrdello, V.P. Conticello, L. Brard, M.R. Gagne, T.J. Marks, J. Am. Chem. Soc. 116 (1994) 10241.
[12] C.A. Willoughby, S.L. Buchwald, J. Am. Chem. Soc. 116 (1994) 8952.
[13] R.L. Halterman, T.M. Ramsey, Z.L. Chen, J. Org. Chem. 59 (1994) 2642.
[14] X. Verdaguer, U.E.W. Lange, M.T. Reding, S.L. Buchwald, J. Am. Chem. Soc. 118 (1996) 6784.
[15] W. Odenkirk, B. Bosnich, J. Chem. Soc., Chem. Commun. (1995) 1181.
[16] J.B. Jaquith, J.Y. Guan, S.T. Wang, S. Collins, Organometallics 14 (1995) 1079.
[17] E. Cesarotti, R. Ugo, R. Vitiello, J. Mol. Catal. 12 (1981) 63.
[18] G. Erker, A.A.H. van der Zeijden, Angew. Chem., Int. Ed. Engl. 29 (1990) 512.
[19] P.A. Schofield, H. Adams, N.A. Bailey, E. Cesarotti, C. White, J. Organomet. Chem. 412 (1991) 273.
[20] H. Adams, N.A. Bailey, M. Colley, P.A. Schofield, C. White, J. Chem. Soc., Dalton Trans. (1994) 1445.
[21] J.A. Ramsden, D.J. Milner, P.D. Hempstead, N.A. Bailey, C. White, J. Chem. Soc., Dalton Trans. (1995) 2101.
[22] J.A. Ramsden, D.J. Milner, H. Adams, N.A. Bailey, C. White, J. Organomet. Chem. 495 (1995) 215.
[23] J.A. Ramsden, D.J. Milner, H. Adams, N.A. Bailey, A.J. Smith, C. White, Organometallics 14 (1995) 2575.
[24] H. Adams, N.A. Bailey, A.F. Browning, J.A. Ramsden, C. White, J. Organomet. Chem. 387 (1990) 305.
[25] L. Li, A. Decken, M.J. McGlinchey, P. Brégaint, J.-Y. Thépot, L. Toupet, J.-R. Hamon, C. Lapinte, Organometallics 13 (1994) 682.
[26] A.W. Burgstahler, D.L. Boger, N.C. Naik, Tetrahedron 32 (1976) 309.
[27] J.R. Boone, E.C. Ashby, Top. Stereochemistry 11 (1981) Chap. 2.
[28] S.C. Case-Green, J.F. Costello, S.G. Davies, N. Heaton, C.J.R. Hedgecock, V.M. Humphreys, M.R. Metzler, J.C. Prime, J. Chem. Soc., Perkin Trans. 1 (1994) 933.
[29] A. Coulombeau, C. Coulombeau, A. Rassat, Bull. Soc. Chim. France (1970) 4389.
[30] W.F. Erman, The Chemistry of Monoterpenes, Marcel Dekker, New York, 1985, p. 1193.
[31] J.A. Benson, C.J. Olsen, J.S. Walia, J. Am. Chem. Soc. 82 (1960) 5000.
[32] J.A. Benson, C.J. Olsen, J.S. Walia, J. Am. Chem. Soc. 84 (1962) 3337.
[33] K. Schlögl, Top. Stereochemistry 1 (1967) 39.
[34] R.L. Haltermann, K.P.C. Vollhardt, Organometallics 7 (1988) 883.
[35] B.E. Mann, B.F. Taylor, Carbon-13 N.M.R. Data for Organometallic Compounds, Academic Press, London, 1981, p. 239.
[36] J.A. Ramsden, D.J. Miller, C. White, manuscript in preparation.
[37] C.R. Hauser, D.N. van Eenam, J. Am. Chem. Soc. 79 (1957) 5512.
[38] Sheldrick, G.M., SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures and Diffraction Data, Revision 4.1, University of Gottingen, Germany, August 1983.
[39] International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974.

[^0]: ${ }^{*}$ Corresponding author. Tel.: +44-0114-2229310; fax: +44-0114-2738673.
 ${ }^{1}$ Dedicated to Peter Maitlis on the occasion of his 65th birthday.
 ${ }^{2}$ Zeneca Specialties, P.O. Box 42, Hexagon House, Blackley, Manchester M9 3DA, England.

